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We report exact results for one-dimensional reaction-diffusion models A + A 
inert, A +A--,A, and A +B--* inert, where in the latter case like particles 
coagulate on encounters and move as clusters. Our study emphasizes anisotropy 
of hopping rates; no changes in universal properties are found, due to 
anisotropy, in all three reactions. The method of solution employs mapping 
onto a model of coagulating positive integer charges. The dynamical rules are 
synchronous, cellular-automaton type. All the asymptotic large-time results for 
particle densities are consistent, in the framework of universality, with other 
model results with different dynamical rules, when available in the literature. 

KEY WORDS: Reactions; anisotropic diffusion; coagulation; synchronous 
dynamics. 

1. I N T R O D U C T I O N  

Diffusion-limited react ions ( D L R )  involving aggregat ion and annihi la t ion  
processes are impor t an t  in many  physical,  chemical,  and biological  
phenomena  ~-3~ such as s tar  formation,  polymerizat ion,  recombina t ion  of  
charge carriers  in semiconductors ,  sol i ton and ant isol i ton annihi la t ion,  
biological ly compet ing  species, etc. In  this paper  we generalize and apply  
a recently in t roduced method  t4'5~ in order  to s tudy by exact solut ion effects 
of an i so t ropy  in some c o m m o n  D L R  in one d imension (1D), specifically, 
A + A ~ A, A + A ---, inert, and a two-species annihi la t ion  model  A + B 
inert in which like part icles coagula te  irreversibly. The detai led definitions 
will be given later. 

Scaling approaches  and other  methods  have yielded tl-3'6-~-~ the upper  
critical dimension D~ for various reactions. Typical  values range from 2 to 4. 
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For spatial dimensions lower than D,. the kinetics of these reactions is 
fluctuation-dominated, and we cannot expect the rate equation approach 
to be valid. Indeed the mean-field rate equation approximation ignores 
effects of inhomogeneous fluctuations. Fluctuation-dominated DLR have 
been subject to numerous studies by other methods, notably exact solu- 
tions and asymptotic arguments c1"13-22~ in 1D. The 1D reactions have also 
found some experimental applications. 123"24~ These studies have assumed 
isotropic hopping (reactant particle diffusion). 

Recently Janowsky t25~ concluded, based on numerical results and 
phenomenological considerations for the two-species annihilation reaction 
A 4-B--* inert, that making the hopping fully directed would change the 
universality class in 1D. Specifically, the large-time particle concentration 
(assuming equal densities of both species) would scale according to 
c ( t ) ~ t  -~/3 instead of the isotropic-hopping power law t -~/4. Few exact 
and numerical results available in the literature on anisotropic reactions 
involving only one species 126"27~ indicate that the power law is not changed. 
The model of ref. 25 assumed that like particles interact via hard-core 
repulsion; this seems to be an essential ingredient for observing the change- 
over in the universality class. 

In this work we report the exact solution for two-particle annihilation 
with anisotropic hopping. We consider discrete-time simultaneous-updating 
dynamics, also termed synchronous dynamics, so that our models are 
cellular-automaton type. The universality classes of behavior at large times 
and large spatial scales are expected not to depend on most of the details 
of the model dynamics. Some features, however, are important. For 
instance, the hard-core constraint plays an important role in determining 
the universality class of models without reactions (see refs. 1 and 25 and 
literature cited therein). In our work, however, in order to achieve exact 
solvability, we took "sticky-particle" rather than hard-core interactions: the 
like particles coagulate on encounters and diffuse as groups. Our exact 
calculations yield the t -~/4 power law found earlier for similar "sticky- 
particle" reactions with isotropic hopping. 12s'29) This result is probably due 
to absence of hard-core interations in our model. 

For unequal intial concentrations, the large-time behavior changes. ~2s'29) 
The crossover between the two regimes is derived analytically. Finally, we 
also obtain new exact results for single-species two-particle aggregation and 
annihilation reactions with anisotropy; see also ref. 26. We find that 
anisotropy does not change the universality class of kinetics of these reac- 
tions. A short version of this work was reported. ~3~ 

This paper is organized as follows: in Section 2 we define and review 
some existing results for the models studied. In Section 3 our method for 
exact solution is introduced. In Section 4 results for the single-species 
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models are presented. Finally, Section 5 is devoted to the two-species 
model. Further scaling analysis of the two-species model and a brief 
summarizing discussion are given in Section 6. 

2. R E A C T I O N - D I F F U S I O N  M O D E L S  

In lattice DLR models with like particles it is usually assumed that the 
particles hop independently, to the extent allowed by their interactions, to 
their nearest neighbor sites. Whenever two particles meet, they can both 
annihilate, which corresponds to the reaction A + A ~ inert. If, however, 
only one particle of a pair disappears, we get the reaction A + A--* A, 
usually termed "aggregation." Such single-species reactions have the upper 
critical dimension Dc = 2.  (6-9) For D < 2 the particle concentration at large 
times behaves according to c ( t ) ~  t -~ Specifically, the 1D kinetics of 
these reactions is non-mean-field, with the typical diffusional behavior 
c(t) ~ t -~/2. This result is not affected by short-range interactions between 
the particles and is not sensitive to their initial distribution as long as 
initial correlations are sufficiently short range. 

Consider now the two-particle annihilation model, to be termed the 
A B  model. Particles hop randomly to one of their nearest neighbor sites. 
Whenever two particles meet, unlike species annihilate, A +B---,inert. 
When like species meet, some interaction must be assumed. The simplest 
interaction is hard core: diffusion attempts leading to multiple occupancy 
of lattice sites are discarded. For such reactions, assuming equal average A 
and B concentrations and uniform initial conditions, the upper critical 
dimension is D c = 4 .  ~6-9) The (equal) particle concentrations scale according 
to c ( t ) ~ t  -~ A surprising, largely numerically based recent result of 
Janowsky I-'51 is the new exponent,~ 1/3, replacing 1/4, for anisotropic 
particle hopping in 1D. For unequal initial concentrations, the density of 
the minority species is expected to decay faster than the symmetric-case 
power law; some specific results will be referred to later. 

In order to obtain a solvable model in 1D, let us now consider the 
A B  annihilation model with the "sticky particle" interaction. Thus, like 
particles coagulate irreversibly on encounters, for instance, 

nA + mA --* (n + m ) A  (2.1) 

and the clusters thus formed then diffuse as single entities with the single- 
particle hopping rates. When unlike clusters meet at a lattice site, the 
outcome of the reaction is 
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f ( n - m ) A  if n > m  

nA + m B  ~ ~inert if 17 = m  (2.2) 

( ( m - n ) B  if n < m  

Recent numerical results and scaling considerations for these reactions ~3~1 
in D = I ,  2, 3 seem to suggest that they are mean field in D---2,3. 
However, in D = 1 the power-law exponent for the density is 1/4, obtained 
by exact solution (2s'29) which also yielded a faster power-law decay ~ t - 3 / 2  

for the minority species in case of unequal densities of A and B. 
As mentioned earlier, in order to obtain exact solutions for our single- 

species and AB models, we first solve another model, t41 of coagulating 
nonnegative integer charges in 1D, t4.~ with anisotropic hopping. All our 
models are defined with synchronous dynamics to be described in detail in 
the next section, along with detailed dynamical rules and their exact solu- 
tion. From the coagulating-charge model one can derive results for the 
reactions A + A  ~ A  and A + A  ~ i n e r t  with anisotropic hopping; see 
Section 4. Some of our expressions are new, while other are consistent with 
results available in the literature. We next use the approach of refs. 28 
and 29 to extend the coagulating-charge solution to the "sticky" A B  model. 
We find that hopping anisotropy does not change the density exponent in 
1D: it remains 1/4; see Section 5. 

3. S Y N C H R O N O U S  D Y N A M I C S  OF COAGULATING CHARGES 

Let us consider a one-dimensional lattice with unit spacing. Following 
ref. 4, we consider diffusion of nonnegative charges on this lattice. Initially, 
at t = 0, we place positive unit charge at each site with probability p or zero 
charge with probability 1 - p .  Furthermore, we consider synchronous 
dynamics, i.e., charges at all lattice sites hop simultaneously in each time 
step t ~ t + 1, where t = 0, 1, 2,.... However, the probabilities of hopping to 
the right, r, and to the left, l =  1 -  r, are not necessarily equal. Since this 
dynamics decouples the even-odd and odd-even space-time sublattices, it 
suffices to consider only those charges which are at the even sublattice at 
t = 0. Thus we only consider the lattice sites j = 0, + 2, + 4 ..... at times t = 0, 
2, 4 ..... and lattice sites j = __+ 1, ___ 3, • 5 .... at times t = 1, 3, 5,.... 

One can view the diffusional hopping as taking place on a directed 
square lattice with the time direction along the "directed" diagonal. This 
lattice is illustrated in Fig. 1; note that the charges arriving at site j at time 
t can only come from the sites j - 1  and j + 1 at time t - 1 .  Finally, the 
"interaction" between the charges is defined by the rule that all charge 
accumulated at site j at time t coagulates. There can be 0, 1, or 2 such 
charges arriving from the two nearest neighbors of j in the time step 
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Fig. I. The I D even-odd sublattices represented as the two-dimensional space-time lattice 
directed along the time axis. The solid-line bonds show possible hopping event directions. 

t - 1 - - *  t, depending on the random decisions regarding the directions of 
hopping from sites j _  1 in this time step. 

This model can also be viewed as diffusion-coagulation of unit-charge 
"particles" C, where the coagulation is presented by the reaction 

nC + m C  ~ ( n + m ) C  (3.1) 

Such reactions, without the limitation of positive or integer charges, and 
with an added process of feeding-in charge at each time step, with values 
drawn randomly at each site from some fixed distribution, have been con- 
sidered as models of self-organized criticality and coagulation/5's2'331 These 
studies were limited to isotropic hopping, i.e., r = l =  1/2. Our interest in 
these reactions is in that their dynamics can be mapped ~4"28'291 onto that of 
both the single-species (Section 4) and "sticky" AB (Section 5) reaction- 
diffusion models introduced in Section 2. However, before discussing and 
utilizing this mapping, let us present the exact solution of the model of 
coagulating charges with anisotropic hopping, following the ideas of refs. 4 
and 5. 

For each time t and at each lattice si tej  (of the relevant sublattice) we 
define stochastic variables 

rj(t) = {10 probability r 
probability l (3.2) 

which represent the hopping direction decisions. Then the stochastic equa- 
tion of motion for the charges qj(t), equal to the number of C particles at 
site j at time t, is 

q , , ( t + l ) = % _ l ( t ) q , _ l ( t ) + [ 1 - - r , , + l ( t ) ] q , , + l ( t )  (3.3) 

822/81/5-6-2 
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The total number of C particles, or the total charge, in an interval of 
k consecutive proper-parity-sublattice sites, starting at site j at time t, is 
given by 

k - - I  

Sk. j ( t )  = Y'. qj+zi( t)  = qi( t )  + q j+, ( t )  + . . .  + q i+zk-2( t )  
i = 0  

(3.4) 

Due to conservation of charge in this process, the equations of motion 
(3.3) yield the relation 

Sk.,,(t + 1) = r,,_ i(t) q,,_ i(t) 

+ q , , + l ( t ) +  "'" + q , , + , ~ - 3 ( t )  

+ [ 1 -- zn +,~_ i(t)] q,, +- 'k-t( t)  (3.5) 

This result indicates that only the two random decisions at the endpoints 
are involved in the dynamics of charges in consecutive-site intervals. The 
exact solvability of coagulating-charge models is based on this property, 
as first observed in ref. 5. Other solution methods were used in related 
interface-growth models, c34~ which will not be discussed here. 

Let us introduce the function 

I(s, m) = 6 ..... (3.6) 

and averages 

fk.,,,( t) = ( l( & j (  t), m) ) (3.7) 

The average ( . . . )  is over the stochastic dynamics, i.e., over random 
choices of the decision variables rt(t), as well as over the random initial 
conditions. Such the latter are uniform, the averages fk., ,( t) in (3.7) do not 
depend on the lattice site j. Functions other than the Kronecker delta have 
been used for I(s, m)  in the literatureJ 4'5"3-''33~ With our choice (3.6), the 
resulting averages fk.,,(t) correspond to the probability to find exactly m 
charge units in an interval of k consecutive sites. For instance, f j .m( t  ) is the 
density (fraction) of sites with charge m. 

Note that (3.5) essentially represents the following simple rule: charge 
"fed" into an interval of k sites comes from k + 1 sites, at the preceding 
time-variable value, with probability rl, from k -  1 sites with probability rl, 
and from two possible groups of k sites, with probabilities r 2 and l'-; this 
is illustrated in Fig. 2. Furthermore, the variables r a t )  and Sk.,,(t) are 



Anisotropic Diffusion-Limited Reactions 887 

t . . . .  f . . . . . . . . .  , " " "  " 

Fig. 2. The charge in a continuous span of k lattice sites at time t + 1 can come from (a) 
k -  1 sites at time t, with probability rL Note that the directions of hopping from these k - 1 
sites, shown by double arrows, are immaterial. Only the two exterior sites of the larger, 
(k + l)-interval shown determine the probability rl. Another possibility is (b) for the charge 
to come from k sites at time t. In this case both end sites of the (k + l)-interval hopped to 
the right. The probability of (b) is therefore r-'. Similarly, the probability of the charge coming 
from the other k-interval, event shown as (c), is 12. Finally, (d) the charge can also come from 
all k + 1 sites shown at time t, with probability rl. 

s tat is t ical ly i n d e p e n d e n t  because the la t ter  on ly  depends  on  "decis ion-  
m a k i n g "  var iables  r i at ear l ier  times. Therefore,  the averages i n t roduced  in 
(3.7) satisfy, for any  func t ion  l ( s ,  m), the fol lowing equa t ions  of  mo t ion :  

f k . , , ( t + l ) = r l [ f k + , . , , , ( t ) + f k _ ~ . , , , ( t ) ] + ( r ' - + l Z ) f k . , , ( t )  (3.8) 

In teres t ingly ,  the m dependence  is pa ramet r i c  in (3.8). However ,  it 
does enter  the ini t ial  condi t ions .  It  is also conven i en t  14~ to define 

f o . , , , ( t ) = I ( O , m )  in order  to extend the appl icabi l i ty  of (3.8) to all t>~0. 
F o r  our  specific choices, we have the fol lowing expressions.  First ,  the 
ini t ial  cond i t i ons  of  p lac ing  charge 1 or  0 at each site, w i th  respective 
probabi l i t ies  p a n d  1 - p ,  co r r e spond  to 

- p l  t,,,I, ~p" ' (1  .k . . . .  k ,  

fk,, , ,(O) = ( 0 ,  
O <~ m <<. k 

(3.9) 
m > k  
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where (,,k)= k ! / [ m ! ( k -  m)! ]. Second, the boundary condition is that a null 
interval cannot have charges, i.e., 

fo.,,,(t >>-O)=6o .... (3.10) 

In order to solve the equations of motion (3.8) we introduce the 
double generating function offk.,,,(t), over the time variable t and over the 
number of charges m, with fixed number of sites k, 

gk(u,w)= ~ ~ f , , , , ,(t)  u ' w "  (3.11) 
t ~ O  m = O  

It is also convenient to introduce the variable a = r -  l directly measuring 
the hopping anisotropy, 

r= (1  +a) /2  and /=(1  - a ) / 2  (3.12) 

A straightforward but tedious calculation then yields the following 
difference equation, which derives from the equations of motion (3.8), 
with (3.9): 

g ,+ i(u, w) + 2 ( 1 + a 2) u -- 
( 1 -- a'-) u 2 gk(u, W) + gk - l( u, W) 

4 
-- (1 --a'-)~----u (wp + 1 _ p ) k  (3.13) 

The initial and boundary conditions "translate" as follows: 

gk(0, W) = (wp + 1 _ p)k  (3.14) 

1 
go(u, W) = 1 -- U (3.15) 

The solution of (3.13) is obtained as a linear combination of the 
special solution t'2(wp+ 1 _p)k  proportional to the right-hand side, and 
that solution of the homogeneous equation which is regular at u = 0. The 
coefficient g2 is obtained by substitution, 

4( wp + 1 - p) 
t 2 = - ( l _ a Z )  u ( w p + l _ p _ A + ) ( w p + l _ p _ A  ) (3.16) 

where it is convenient to express the denominator in terms of the roots A + 
of the characteristic equation of (3.13), 

(1 + a ' - ) u - - 2  
A-'+2 (1 --a2)u A + 1 = 0  (3.17) 
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These roots are given by 

2--(1 + a  2) u+_ 2[(1 -u)(1  --a2u)] I/2 
A_+ = (1 --a2)u (3.18) 

and the root A_,  which is nonsingular as u - , 0 ,  also gives the 
homogeneous solution proportional to A t .  The proportionality constant is 
determined by (3.15). In summary, the solution takes the form 

1 - 1 2 ) A  k + I 2 ( w p + l - p )  k (3.19) gk(u, W)= ~ 

The w dependence of this result is via 12 [see (3.16)] and it is of a sim- 
ple rational form. Therefore, derivation of the dependence on the number 
of charges, "generated" by w, is relatively simple. In our applications we 
will concentrate on densities of reactants at single lattice sites, derived from 
J'k= ~.,,(t). The m dependence then follows by expanding (3.19) in powers of 
w. However, the u dependence of (3.19) with (3.16), (3.18), is more 
complicated. Therefore we will use the generating functions for the time 
dependence and most of our explicit time-dependent expressions will be 
derived as asymptotic results valid for large times. Indeed, the power series 
in u are then controlled by the singularity at u = 1, and analytical results 
can be derived by appropriate expansions. Specifically, let us introduce the 
time-generating function for the quantities f~.,,,(t), which represent the 
probability to find charge m at a lattice site at time t. We define 

Gin(u) = ~ .fl.m(t) U' (3.20) 
t = O  

The central result of this section is thus 

I A_ 4 ] 1)"' 4A+p .... 
G,,,(u)=J,,,.o 1 - u  (1-ct-)u" _ - ( -  ( 1 - a 2 ) u ( 1 - p - A + )  ''+l 

(3.21) 

where A• were given in (3.18). Note that G,,,(u) is just the ruth Taylor 
series coefficient in w of the function g~(u, w). 

4. S I N G L E - S P E C I E S  R E A C T I O N S  

In this section we map the coagulating-charge model onto the two 
single-species reactions introduced in Section 2. This approach follows 
recent work, 14) although related ideas have been used in earlier literature, 
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for instance, in ref. 35. Let us consider first the two-particle aggregation 
reaction A + A ~ A. In the coagulating-charge model we now regard each 
"charged" site as occupied by an A particle and each "uncharged" site as 
empty of A particles. Specifically, any charge m > 0 represents an A par- 
ticle. No charge at a site, m = 0, corresponds to absence of an A particle. 
The dynamics of the coagulating charges then maps onto the dynamics of 
the reaction A + A--* A on the same lattice, with the initial conditions of 
placing particles A randomly with probabili ty p, or leaving the lattice sites 
vacant with probabili ty 1 - p ,  so that the initial density of the A particles 
is 

c(0) = p  (4.1) 

We now observe that the quanti ty f , .o( t )  gives the density of empty 
sites in both models. Therefore, the particle density (per lattice site) c(t) in 
the aggregation model is given by 

c(t) = 1 -- f l .o( t )  (4.2) 

The generating function is therefore easily derivable from (3.21), 

1--L--ao(.) 
t=o 1 - -u  

1 - A  4(1 - -p)  
- + i  - (4.3) 1 - u  1 a2) u ( 1 - p - A + )  

The function E(u)  is actually regular at u = 0. Thus the Taylor  series 
is controlled by the singularity at u = 1, near which we have the leading- 
order term 

2 E 1  ] E(u)  = ( 1 - a 2) 1/2 ( 1 - u)]/------------~ + G0( 1 ) (4.4) 

This yields the leading-order large-time behavior, 

2 
c(t) ~ [(1 - - a  2) m ]  1/2 (4.5) 

While we are not aware of other exact solutions for this model with 
anisotropic hopping, the result (4.5) is not surprising. Indeed, the leading- 
order large-time behavior is expected to be universal in that it does not 
depend on the initial density p. Furthermore,  the diffusion constant ~ ( a )  = 
( 1 - a  2) ~ (0 )  decreases proport ionally to 1 - a  2 when the anisotropy is 
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introduced (single-particle diffusion is then of course also accompanied by 
drift). Therefore, as a function of ~(a)t, the result (4.5) also does not 
depend on the anisotropy and in fact it is the same as expressions found 
for other A + A ~ A reaction models with different detailed dynamical rules 
(with isotropic hopping), e.g., ref. 20. 

Let us now turn to the two-particle annihilation model A + A ~ inert. 
The appropriate mapping here is to identify odd charges with particles A 
and even charges with empty sites. Indeed, the dynamics of the coagulating- 
charge model is then mapped onto the reaction A + A ~ inert. Thus, each 
lattice site with an odd charge q = 1, 3, 5,... will be replaced by a site with 
one A particle. Each lattice site with an even charge q = 0, 2, 4 .... is empty 
of A particles. The rules of charge coagulation then reduce to the desired 
reaction. Furthermore, relation (4.1) applies. However, the generating func- 
tion E(u) for particle density is given by a different expression, 

E(u) = ~ 4A+ p (4.6) 
y = 0  G2j+ I ( u )  = ( 1 -- a 2) u[( 1 -- p -- A + )2 _ p 2 ]  

The large-time behavior is similar to the aggregation reaction, with the 
universal expression which only differs from (4.5) by a factor of 2, 

1 
c(t) ~ [ ( 1 - a 2) nt] i]2 (4.7) 

While the large-time behavior of both models is model independent 
and otherwise universal as described earlier, the finite-time results do 
depend on details of the dynamical rules. For our particular choice of 
synchronous dynamics on alternating sublattices (Fig. 1), there exists an 
exact mapping relating the isotropic-hopping aggregation and annihilation 
reactions, c4) This mapping was also found for the anisotropic-hopping 
results obtained here. Specifically, we find (by comparing their generating 
functions) 

2ci,ert(t; p) = cA(t; 2p) (4.8) 

where the subscripts denote the outcome of the reaction, while the added 
argument stands for the initial density. Thus if we consider an annihilation 
reaction with, initially, at t = 0, half the particle density as compared to an 
aggregation retlction with the same synchronous dynamical rules, then the 
density ratio will remain exactly 1/2 for all later times, t = 1, 2 ..... as well. 

We note that due to complexity of expressions involved, results like 
(4.4) and especially (4.8) in this section as well as many other expressions 
in the next two sections could only be derived by using symbolic computer 
programs Maple and Mathematica. 
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5. TWO-SPECIES ANNIH ILAT ION MODEL 

In this section we present results for the AB model defined in 
Section 2. We assume that initially particles are placed with density p, but 
now a fraction ct of them are type A and a fraction fl are type B. Clearly, 

~ + p = l  (5.1) 

Furthermore, the initial A- and B-particle concentrations are, respectively, 
ctp and tip. The concentration difference is constant during the reaction; it 
remains (~ - f l )p .  At large times, this is also the limiting value of the 
density of the majority species, while the density of the minority species 
vanishes. In what follows we assume 

which can be done without loss of generality. Indeed, the results for ~ < fl 
can be obtained by relabeling the particle species. Thus, either the concen- 
trations are equal or the majority species is always A. Our goal will be to 
calculate the density c(t) of the majority species A. 

The dynamics of the AB model can be related to that of the coagulating- 
charge model of Section 3 by adapting the ideas of refs. 28 and 29. First, we 
note that the dynamics of the "sticky" A + B--* inert model can be viewed 
as coagulation. Thus, if a group of n particles A and m particles B meet, 
they can be viewed as coagulating and continuing to move together. Of 
course, at later times this combined group may become part of a larger 
coagulated cluster of particles. However, if their contribution to the particle 
count is according to (2.2), the annihilation is properly accounted for by 
this counting both upon original and later coagulation events with other 
clusters. Alternatively, one can view these particles as new charges, + 1 for 
A and - 1 for B. If the total charge of a coagulated cluster is positive, then 
we view it as a group of A particles (equal in their number to the charge 
value). If the charge is negative, we consider the cluster a B particle, while 
if the charge is 0, we regard this cluster as nonexistent (inert) in the AB 
model. 

The probability of having an m-particle (charge m) cluster in the 
original positive-charge-only model was given by f,.,,,(t). Each such 
m-particle cluster can have charge n = - m ,  - m  + 2,..., m - 2, m, where we 
now refer to the new, __+ charge definition rather than to the positive 
charges of the original coagulation model. The key observation is that 
having a "species" label assigned to a particle at time t - - 0  is statistically 
independent of its motion and affiliation as part of clusters at later times. 
Statistical averaging over the particle placement initially and their motion 
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at later times while coagulating to form particle clusters is uncorrelated 
with the choice, with probabilities c~ and fl, of which species label to 
allocate to each particle at time t = 0. 

Thus the density (per site) of m-size clusters with exactly n units of 
charge, where m size is that of the original coagulation models, while the 
charge - m  ~< n ~< m is the new +_ type, is given by 

m! 
~, , , . , , ( t )  = ~1,,, + , ,v - '~  . . . . .  ,/2 : (5 .3 )  

((m + n)/2)! ((m - n)/2)! fk ' ( t )  

Therefore the density per site of A particles, i.e., the density per site of the 
+ charge, can be written as 

i i  ~ I m ~ sl, n + 2 , . . .  

Similar to Section 4, let us denote the time-generation function of c(t) 
by E(u); see (4 .3) .  B y  using results from Section 3, and after some algebra, 
we get the following expression for the generating function: 

4A+ (x 0 0 )  
E(u)=(1--a2)u(p+A 1) b--f + _ .'-~x--y S(x,y) (5.5) 

Here we introduced the function 

and the variables 

,,,,,_- i i 
n = l  j = O  

(5.6) 

plx 
x = (5 .7 )  

p + A + - I  

pP 
Y p+A+ - 1  

(5 .8 )  

To make progress, we have to evaluate the double sum in (5.6). This 
is accomplished as follows. First, we write the sum 

where 

S(x,y)= ~ s,x" (5.9) 
n =  I 

~. (xy)J F(2j+n+ I) 
s,,= j ! F ( j + n + l )  

j = O  

(5.1o) 
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Now, by using the duplication formula for the gamma function, we have 

((n + 1 )/2)j ((n + 2)/2)j (4xy) j 
(5.1 1 ) Sn 

j=o ~ j! (n+  1)j 

where (z)j=F(z+j)/F(z).  The sum in s,, is a special case of the hyper- 
geometric function, 

Sn= 2El(V, v+  1/2; 2v; () (5.12) 

where v = (n + 1 )/2 and ( = 4xy. 
Fortunately, this can be expressed in elementary terms; all subsequent 

references in this paragraph are to formulas in Chapter 15 of ref. 36. First, 
using Gauss' linear transformation (15.3.6), we obtain 

s,,=F(v) F(v_ l/2) 2F I v, 2' 

1-'(2v) F(1/2) (1_~)_,/2 F l ( v , v _ l ; ~ ; l _ ( )  (5.13) 
+ F(v) F(v + 1/2) 

Next, from the recursion relation (15.2.20), 

~Ft(v,v ~ ; l . l _ ( )  

=r 2F, (v, v+�89 �89 1 -r  

+(1 - 2 v ) ( l  - ( )  2El(V, v+  1.3. I - ~ )  (5.14) 5, 5, 

Now, by (15.1.10), 

2F1 v, v + 2 ; ~ ;  1 - (  

(I _()-~/2 
2(1-2v) {[1+(1-() ' /2] ' -2"-[1-(1-C) ' /2] ' -2"} (5.15) 

while (15.1.9) yields the analytical expression 

2F,(v, v+�89 �89 1 - ( ) =  ~{1 +(1 - ()1/2]-'-"+ [ 1 - ( 1  _ (),/23 -2,,} 

(5.16) 

and so we have 

2Ft(v, v+~;  " 1 - ( )  _ _~, 

-- �89 +(1 _(),/23 -2v + [1 - ( 1  _r -2,, i} 

+�89162 {[1 + ( l - ( ) ' / 2 3 ' - 2 v - [ 1 - ( 1 - ( ) m ] ' - 2 v }  (5.17) 
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Putting all this together, we find 

s,, = 22v- t(1 _r  [1 +(1  _()1/2] 1-2v 

=(1  - -4xy)  -1/2 
1 + ( 1 - 4xy)l/2J 

(5.18) 

and finally, 

( 2x "~" 
S(x, y) = ( 1 -- 4xy) - 1/2 

,,~l 1 + ( 1 - 4 x y ) l / 2 J  

2x 

=(1  - 4 x y )  1/2 [1 - 2 x  + ( 1 - 4 x y )  1/2 ] 
(5.19) 

It is useful to introduce the parameter b = e - f l  >t 0, which measures 
the excess of A over B at time t = 0, 

~= (1  +b) /2  and f l=(1  - b ) / 2  (5.20) 

Consider first the equal-concentration case b = 0. The large-time behavior 
of the concentration c(t) is governed by the singularity at u =  1 of the 
generating function E(u). The form of the latter was evaluated near u = 1 
from the expressions derived in this section, with the result 

1 [  x/P 1 - p  ( l_u)~/2 + ( 9 ( l _ u )  1 
E(u)=(l_u)3/--------~ 2(1_a2)1/4 4 x / ~ ( 1 - a 2 )  3/4 

(5.21) 

The leading-order behavior of the A-particle concentration follows from 
the first term in (5.21), while the second term will be further discussed in 
Section 6. We get 

(5.22) c(t) ~ 2F(3/4)( 1 - a'-)i/4 t 1~4 

The most significant feature of this result is that, similar to the single- 
species reactions considered in Section 4, the anisotropy, a, dependence 
can be fully absorbed in the diffusion constant, in terms of N ( a ) t =  
(1 -a - ' )  ~(0)t .  The exponent 1/4 was derived in refs. 28 and 29 for different 
(isotropic) dynamical rules. 
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A similar expansion for fixed b > 0 yields 

1 - b  2 2(1 - b 2 ) ( 2 - b 2 p )  
E ( u ) =  + ( l _ a 2 ) b 3  - ( l_a2)3/2bSp 2 ( 1 - - u ) t / 2 + O ( 1 - u )  

(5.23) 

The leading term in (5.23) corresponds to the constant contribution c ( t )=  
bp+  . . . ,  which is expected since A is the majority species. In fact, 
expansions near u = 1 are nonuniform in the limits b ~ 0 + and b ~ 0 - .  In 
deriving (5.23) we used for the first time the fact that the majority species 
is A. The approach to the constant-asymptotic-density value is given by the 
third term in (5.23), 

(1 -b2)(2-b~-p) 
c( t ) - bp ,~ x//~ b S p2( 1 - a2 ) 3/2 t 3/'- (5.24) 

Note that this difference is just the density of the minority species B. As 
before, the anisotropy dependence of this leading-order power-law correc- 
tion is fully absorbed in the diffusion rate, while the exponent is consistent 
with the results of refs. 28 and 29. Details of the crossover in the limit b ~ 0 
are discussed in the next section. 

6. CROSSOVER SCALING IN THE TWO-SPECIES REACTION 

As emphasized in the preceding section, the limit u ---, 1 is nonuniform 
at b - -  0, i.e., the pattern of the asymptotic large-time behavior changes at 
equal A- and B-particle concentrations. It is of interest to explore this 
behavior in greater detail within the standard crossover scaling formula- 
tion. In this approach, one seeks a combination of powers of variables each 
of which vanishes in the limit of interest, such that this so-called scaling 
combination can be kept fixed in the double limit. The appropriate choice 
is expected to yield a nontrivial variation of quantities of interest in the 
limit, as functions of the scaling combination. 

In our case, the appropriate scaling combination turns out to be 
proportional to b/( 1 - u )  ~/4, as determined by inspection of various limiting 
expressions. It proves convenient to absorb certain constants into the 
precise definition of the scaling combination a, 

a = x/p(1 -a2)J/4b/(1 - u )  I/~ (6.1) 

The time-generating function E(u) studied in Section5 will be now 
analyzed in the double limit b ~ 0 and u --, 1 - ,  taken with fixed values ofa.  
From expressions derived in Section 5 one obtains 

E(u) ~ p - 1 ( 1  - a 2 )  - I  b -3R(a)  (6.2) 
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where R is termed the scaling function. Note  that  the first two prefactors 
are constants  in the limit of  interest. However,  the power b - 3  is necessary 
to ensure scaling function values of order 1 for 0. of  order 1. 

The scaling function R can be derived exactly, 

0.3[0. + (4 + 0.2)1/,_]2 
R(0.) - 4(4+0.2) , / ,  - (6.3) 

Note  that  it is analytic at 0. = 0, where 0. oc b. Thus, at the expense of intro- 
ducing the nonanalyt ic  factor in 0. which is power  law in 1 - u  [see (6.1)], 
we managed  to "blow up" the regime of small b. The scaling limit provides, 
as usual, a better understanding of the crossover in the limit b ~ 0. Note  
that for 0. ,~ 1 the following small-argument  expansion of R(0.) applies: 

R ( 0 . ) = ,  ~ _ ,  4 _~0.- + _~0. + (.0(0. s) (6.4) 

It is interesting to note that  the leading term here actually reproduces the 
first term in (5.21). The latter was the limiting form for u--* 1 at b = 0 .  
Indeed, the b dependence cancels out, while the ( 1 -  u) dependence is the 
identical, simple power  law in both  limits. However,  the second term in 
(5.21) does not seem to correspond to the next scaling-expansion contr ibu- 
tion; see (6.4). Corrections to the leading scaling behavior  contribute to 
this term in the b = 0 expansion. 

In the opposite limit, 0.---, +oo, we get the expansion 

R ( o ' )  = 0 .4 n t- 1 -- 40. -2 + (~(o "-4) (6.5) 

The first term here reproduces the leading term in (5.23). Indeed, the limit 
a - ~  + ~  corresponds to u ~ l  at fixed small positive b. Interestingly 
enough, the next two terms in (5.23) are also reproduced in their small-b 
form by the next two terms in (6.5). For  instance, the second term in (6.5) 
yields 1/[(1-a2)b3p] in E(u). Similarly, the third term in (5.23) is 
reproduced with numera to r  4, which is the correct small-b limiting value. 
Thus the minority-species concentrat ion (5.24) with, for small b, the 
numera to r  replaced again by 4 is also contained in the scaling form. Of  
course, corrections to scaling, not discussed here, yield improved results. 

The main l~oint of  the scaling description is that  it provides a uniform 
limiting approximat ion  in the double limit b --* 0 and u --* 1. Specifically, the 
region of nonuniform behavior  near  b = 0 is exploded by the large factor 
~ ( 1 - u) - ,/4. In terms of a, the behavior  is smooth  and well defined. For  
instance, the result (6.3) applies equally well for a < 0, which corresponds 
to A becoming the minori ty species. The limit of  u---, 1 -  at small fixed 
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b < 0 is described by the limit a ~ -o~.  The appropriate expansion takes 
the form 

R(a) = - 1 + 4a -2 + (9(0 " - 4 )  (6.6) 

similar in structure to (6.5), but without the constant-density first term. 
The scaling formulation developed in this section for the particular 

one-dimensional "sticky-particle" model studied should apply to other 
models with hard-core interactions and in higher dimensions. However, the 
results must be viewed with caution. The exponent values are likely to be 
different. Furthermore, the leading behavior of the asymmetric-model 
minority-species density [see (5.24)] will not be power law. Rigorous con- 
siderations ~17'2~1 and mean-field models suggest exponential behavior for 
b :/: 0. This will result in different asymptotic forms for large lal. Of course, 
these expectations only emphasize that the sticky-particle and hard-core 
models belong to different universality classes. 

In summary, we derived exact results for several reaction-diffusion 
models in one dimension. The leading-order large-time particle densities 
show expected power-law and universal behaviors. Anisotropy of hopping 
has no effect on the universality class of the models studied, and it can be 
largely absorbed into the definition of the diffusion constant. While finite- 
time results are expected ~26~ to be more sensitive to the value of the 
anisotropy parameter a, they are cumbersome to derive and of less interest 
than the leading-order expressions. One interesting exception is the duality 
relation (4.8), which applies for all finite time values in our synchronous- 
dynamics models. 
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